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In 1990, Gutman and Mizoguchi conjectured that all roots of the 8-polynomia (G, C, x)
of agraph G arereal. Since then, there has been some literature intending to solve this
conjecture. However, in al existing literature, only classes of graphs were found to show that
the conjecture is true; for example, monocyclic graphs, bicyclic graphs, graphs such that no
two circuits share acommon edge, graphs without 3-matchings, etc, supporting the conjecture
in some sense. Yet, no complete solution has been given. In this paper, we show that the
conjecture istrue for al graphs, and therefore completely solve this conjecture.
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1. Introduction

Throughout the paper, all graphs are finite and simple, and acircuit C of agraph G
means a connected subgraph of G such that every vertex of C has degree 2. For notations
and terminology not defined here, werefer to [1,2]. Let V(G) and E(G) denote the set
of vertices and the set of edges of agraph G, respectively.

Let G be agraph with n vertices. Denote by m (G, k) the number of k-matchings
of G. The matching polynomial of G is defined by

(G, x) =Y (=D!m(G. x"%,
k>0

where m(G, 0) = 1. Matching polynomials are extensively studied in chemical graph
theory. It iswell-known that all roots of a matching polynomia are real, see[2,3].

Let H be a subgraph of G. We denote by G\ H the subgraph of G obtained by
deleting the vertices of H from G. Let uv be an edge of G. We denote by G — uv the
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graph obtained by deleting the edge uv from G. Obvioudly, if C and P areaHamiltonian
circuit and a Hamiltonian path, respectively, then «(G\C, x) = 1and «(G\ P, x) = 1.

In the chemical literature, the graph polynomia B(G, C, x) has been studied,
which is defined as follows:

B(G, C,x) =a(G, x) F 20(G\C, x), D

where C isacircuit of G. The sign “—" is used in the case of a so-called Huickel-type
circuit, whereas the sign “+" is used for a so-called M&bius-type circuit. See [4] for
details.

For the use of B-polynomials in chemical molecules, it is essentia that al roots of
these polynomials are real. In [5], Aihara mentioned that all roots of the 8-polynomials
are real, but gave no arguments to support his claim. In 1990, the following conjecture
was proposed by Gutman and Mizoguchi in [6], and later in [7,8].

Conjecture. For any circuit C contained in any graph G, al roots of the g-polynomial
of G areredl.

Since then, many classes of graphs such that al roots of the g-polynomias are redl
have been found in [4,6-13], such as monocyclic graphs, bicyclic graphs, graphs such
that no two circuits share a common edge, graphs without 3-matchings, etc., supporting
the conjecture in some sense. Yet, there has been no complete solution to this conjecture.
In this paper, we show that the conjecture is true in general, and therefore completely
solve the conjecture.

2.  Somededfinitionsand lemmas

Definition 1 [2,3]. Let G beagraph with avertex u. Thepath tree T (G, u) isdefined as
follows: T(G, u) isthetreewiththe pathsin G starting at u representing the vertices, and
where two such paths are joined by an edge if one is contained in the other maximally.
T (G, u) iscaled apath tree of G with respect to u or apath tree of G starting at u. Note
that if G isnot connected, then T (G, u) is determined only by the connected component
of G which contains the vertex u.

In order to give some feeling about the construction of a path tree, we would like
to give the following example.

Examplel. Let G be agraph with V(G) = {1,2,3,4,5,6} and E(G) = {12, 14, 13,
24,34, 45,56}. By T = T (G, 1) we denote the path tree of G starting a 1. The vertex
setof T is{1, 12, 124, 1245, 12456, 1243, 14, 142, 143, 145, 1456, 13, 134, 1342, 1345,
13456}, a vertex iii,...i, is adjacent to avertex ji1jo...j, if and only if iyis...i; =
Jijo ... Ji—1 OVigin. . ix—1 = j1j2... Ji.
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In [2], the path tree T (G, u) is aso caled a Godsil tree. There the following
properties of T (G, u) were given:

() T(G,u)isatree;
(i) if G isatree, then G and T (G, u) are isomorphic; and

(@iii) if Ng(u) = {vy, va,...,v,} isthe set of vertices adjacent to u in G, then
T (G, u) isisomorphic to the graph 7T (G; u, Ng (1)) obtained from the graphs
T(G\u,v;) (i = 1,2,...,r) by adjoining a new vertex u that is adjacent
to each vertex corresponding to the single element path (v;) in the graphs
T(G\u,v) i=212,...,r).

From the above properties, we can obtain:

Lemmal. Let G be a graph with a vertex u, and let v; € Ng(u). Denote by G’ the
graph obtained from the graphs G — uvy, and T (G\u, v1) by adding anew edge between
the vertex u of G — uv, and the vertex (vy) of T(G\u, v1). Then T (G, u) isisomorphic
to 7(G', u).

Proof. Let Ng(u) = {vy, v, ...,v.}. From (ii) and (iii) of the above properties,
it is not difficult to see that both T(G,u) and T(G’,u) are isomorphic to the tree
T(G;u, Ng(u)). The details are omitted. O

Lemma?2 [3]. Let G beagraph with avertex u. Let P be apath starting at the vertex u
inthegraph G and let T = T(G, u). Denote by P’ the unique path in T from u to P.
Then

a(G\P,x) a(T\P', x)
a(G,x) (T, x)

The following result iswell known in this subject, which will be used in our induc-
tive proof in the next section.

Lemma3 [6]. Let G be a monocyclic graph, and C the unique circuit of G. Then all
roots of the polynomia (G, C, x) arered.

Remark. Note that the coefficient “2” in the g-polynomia can not be improved by a
bigger constant ¢. For example, let G be the circuit C4 on 4 vertices, then B(G, C, x) =
(x* — 4x%2 4+ 2) +c. Thediscriminant is A = 42 — 4(2+ ¢) = 8 — 4c, and hence all roots
of B(G, C, x) arered if and only if A > 0, which impliesthat ¢ < 2. One can find more
such examples to show that the coefficient “2” isin some sense a best possible constant.

3. Mainresults

Theorem. For any circuit C contained in any graph G, al roots of the polynomial
B(G, C, x) arereal.
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Proof. For agraph G we denote by C(G) the set of all circuitsin G and by |C(G)| the
number of all different circuitsin G. By two different circuits, we mean that one of the
two circuits has at least one different edge from the other circuit. We prove this theorem
by induction on the number |C(G)]|.

From lemma 3, we know that if |C(G)| = k = 1, the theorem holds.

Suppose that the theorem holds for all graph G’ such that |C(G’)| < k — 1. Now,
for agraph G suchthat |C(G)| = k > 2, takeacircuit C € C(G) andlet C = vyv;. .. v,.
Denote by P the path viv; ... v, in G. Note that the starting vertex v, could be taken as
any vertex on the circuit C. We distinguish the following two cases.

Case 1. C shares acommon vertex with anather circuit C’ of G.

Then there is avertex v, on both C and C’ such that an edge viu4 isin C’ but not
in C. Denote by G’ the graph obtained from the graphs G — viu; and T (G\v1, u1) by
adding anew edge between the vertex v, of G —viu; and thevertex (uq) of T(G\vq, u1).
From lemmal, we seethat T (G, v1) = T(G’, v1) and C isacircuit of both G and G'.
Notethat P = vyv,... v, isapath of both G and G'. We denote by P’ (respectively P”)
the unique path in T(G, v1) (respectively T (G’, vp)) from (v,) to P. Clearly, P’ = P”
under the same isomorphism of T(G, v1) = T(G’, v1). Hence, from lemma 2 we have
that

a(G\C,x) a(G\P,x) o(T(G,v1)\P', x)

o (G, x) o (G, x) a(T(G,vy), x)
and
a(G'\C, x) a(G'\P, x) a(T (G, v)\P', x)
a(G,x)  a(G,x)  a(T(G,v1),x)
Therefore,

a(G\C,x) a(G'\C,x)
(G, x)  a(G,x)

So, we obtain that
a(G,x) F22¢(G\C,x)  a(G',x) F2a(G'"\C, x)
a(G, x) B a(G', x)

’

B(G,C,x) B(G',C,x)
a(G,x) (G, x)
In aclearer formula,

B(G', C,x)a(G, x)
= ) 2
B(G, C, x) 2(G'. ) 2
Since G’ has a most £ — 1 circuits, from the induction hypothesis we know that all
roots of the polynomial 8(G’, C, x) arereal. Also, from [2,3] we know that all roots of
the polynomia « (G, x) are real. Hence, from formula (2) we see that al roots of the

polynomial B(G, C, x) areredl.
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Case 2. C does not share any common vertex with any other circuit of G.

Since G contains at least two circuits, we know that there exists at least one ver-
tex v, on C such that there is a cut-edge v,u1 of G with the property that in G — vyu,
the connected component containing the vertex u; has at least one circuit C’. Denote
by G’ the graph obtained from the graphs G — vyu; and T (G\vq, u1) as constructed in
case 1. From lemmal, we seethat T (G, vy) = T(G’, v1) and C isacircuit of both G
and G'. Notethat P = vyv,... v, isapath of both G and G’. Similarly, we denote by P’
(respectively P”) the unique path in 7(G, v1) (respectively T(G’, v1)) from (v1) to P.
Clearly, P’ = P” under the same isomorphism of T(G, v1) = T(G’, v1). From the
congtruction of the part T(G\v1, u1) of G’, we see that the graph G’ has fewer circuits
than G. Therest of the proof isthe sasme asin case 1. The proof isnow complete. [0

Acknowledgements

The authors would like to thank the referees for their helpful suggestions and com-
ments. The work is fully supported by a grant from the Research Grants Council of the
Hong Kong Special Administrative Region, China (Project No. CityU 1070/02E).

References

[1] JA.Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, Amsterdam, 1976).
[2] D.M. Cvetkovit, M. Doab, I. Gutman and A. Torgasév, Recent Resultsin the Theory of Graph Spectra
(Academic Press, New York, 1980).
[3] C.D. Godsil, Algebraic Combinatorics (New York, Chapman and Hall, 1993).
[4] N. Mizoguchi, Unified rule for stability of Hiickel-type and Mobius-type systems, J. Phys. Chem. 92
(1988) 2754-2756.
[5] J. Aihara, Resonance energies of benzenoid hydrocarbons, J. Amer. Chem. Soc. 99 (1977) 2048-2053.
[6] I. Gutman and N. Mizoguchi, A property of the circuit characteristic polynomial, J. Math. Chem. 5
(1990) 81-82.
[7] 1. Gutman, A contribution to the study of areal graph polynomial, Publ. Elektrotehn. Fak. (Beograd)
Ser. Mat. 3 (1992) 35-40.
[8] 1. Gutman, A real graph polynomia?, Graph Th. Notes New York 22 (1992) 33-37.
[9] M. Lepovic, I. Gutman, M. Petrovi¢ and N. Mizoguchi, Some contributions to the theory of cyclic
conjugation, J. Serb. Chem. Soc. 55 (1990) 193-198.
[10] M. Lepovit, |. Gutman and M. Petrovic, A conjecture in the theory of cyclic conjugation and an
example supporting its validity, Commun. Math. Chem. (MATCH) 28 (1992) 219-234.
[12] X. Li, B. Zhao and |. Gutman, More examples for supporting the validity of a conjecture on
B-polynomial, J. Serb. Chem. Soc. 50 (1995) 1095-1101.
[12] X. Li, I. Gutman and G.V. Milovanovi¢, The 8-polynomials of complete graphs are real, Publ. Inst.
Math. (Beograd) (N.S.) 67 (2000) 1-6.
[13] N. Mizoguchi, Circuit resonance energy — on the roots of circuit characteristic polynomial, Bull.
Chem. Soc. Japan 63 (1990) 765-769.



